在 中級數(shù)據(jù)分析師的基礎(chǔ)上要求掌握 JAVA 語言和 linux 操作系統(tǒng)知識,能夠掌握運用Hadoop、Spark、Storm 等至少一門專業(yè)大數(shù)據(jù)分析軟件,從海量數(shù)據(jù)中提取相關(guān)信息,并能夠結(jié)合 R、Python 等軟件,形成嚴密的數(shù)據(jù)分析報告。就業(yè)方向:通常在*、金融、電信、零售、互聯(lián)網(wǎng)、電商、醫(yī)學等行業(yè)專門從事數(shù)據(jù)分析與云端大數(shù)據(jù)的人員。以下是小編為你整理的大數(shù)據(jù)怎么學好 ?
java基礎(chǔ): ?
1. Java 語言的發(fā)展史、java 開發(fā)環(huán)境搭建以及環(huán)境變量的配置,java 語言跨平臺的原理,java 程序初次開發(fā) ?
2. Java 語法格式,關(guān)鍵字,標識符,注釋,常量,數(shù)據(jù)類型,數(shù)據(jù)類型轉(zhuǎn)換,運算符 ?
3. 程序流程控制語句以及其應用場景 ?
4. 數(shù)組的應用及其常見操作 ?
5. 類和對象的概念、類和對象之間的關(guān)系
?
6. 類的組成部分(成員變量,構(gòu)造方法,成員方法)及其詳細講解 ?
7. 面向?qū)ο蟮娜筇匦裕豪^承、封裝 及其特點剖析 ?
8. 接口和抽象類及其特點分析 ?
9. java 的異常處理機制 ?
10. jdk API 常用類的講解:Math,Random、String,StringBuffer,Date ?
11. Java I/O 體系介紹:File 類的介紹和常用操作,字節(jié)流 InputStream 和OutputStream,字符流 Reader 和 Writer,以及相應實現(xiàn)類的介紹和使用,緩沖流和序列化流的的詳解,IO 性能分析,字節(jié)和字符的轉(zhuǎn)化流,包裝流的概念,以及常用包裝類。 ?
數(shù)據(jù)來源 ?
大數(shù)據(jù)分析的數(shù)據(jù)來源有很多種,包括公司或者機構(gòu)的內(nèi)部來源和外部來源。分為以下幾類: ?
1.交易數(shù)據(jù)。包括POS機數(shù)據(jù)、信用卡刷卡數(shù)據(jù)、電子商務數(shù)據(jù)、互聯(lián)網(wǎng)點擊數(shù)據(jù)、“企業(yè)資源規(guī)劃”(ERP)系統(tǒng)數(shù)據(jù)、銷售系統(tǒng)數(shù)據(jù)、客戶關(guān)系管理(CRM)系統(tǒng)數(shù)據(jù)、公司的生產(chǎn)數(shù)據(jù)、庫存數(shù)據(jù)、訂單數(shù)據(jù)、供應鏈數(shù)據(jù)等。 ?
2.移動通信數(shù)據(jù)。能夠上網(wǎng)的智能手機等移動設(shè)備越來越普遍。移動通信設(shè)備記錄的數(shù)據(jù)量和數(shù)據(jù)的立體完整度,常常優(yōu)于各家互聯(lián)網(wǎng)公司掌握的數(shù)據(jù)。移動設(shè)備上的軟件能夠追蹤和溝通無數(shù)事件,從運用軟件儲存的交易數(shù)據(jù)(如搜索產(chǎn)品的記錄事件)到個人信息資料或狀態(tài)報告事件(如地點變更即報告一個新的地理編碼)等。 ?
3.人為數(shù)據(jù)。人為數(shù)據(jù)包括電子郵件、文檔、圖片、音頻、視頻,以及通過微信、博客、推特、維基、臉書、Linkedin等社交媒體產(chǎn)生的數(shù)據(jù)流。這些數(shù)據(jù)大多數(shù)為非結(jié)構(gòu)性數(shù)據(jù),需要用文本分析功能進行分析。 ?
4.機器和傳感器數(shù)據(jù)。來自感應器、量表和其他設(shè)施的數(shù)據(jù)、定位/GPS系統(tǒng)數(shù)據(jù)等。這包括功能設(shè)備會創(chuàng)建或生成的數(shù)據(jù),例如智能溫度控制器、智能電表、工廠機器和連接互聯(lián)網(wǎng)的家用電器的數(shù)據(jù)。來自新興的物聯(lián)網(wǎng)(Io T)的數(shù)據(jù)是機器和傳感器所產(chǎn)生的數(shù)據(jù)的例子之一。來自物聯(lián)網(wǎng)的數(shù)據(jù)可以用于構(gòu)建分析模型,連續(xù)監(jiān)測預測性行為(如當傳感器值表示有問題時進行識別),提供規(guī)定的指令(如警示技術(shù)人員在真正出問題之前檢查設(shè)備)等。 ?
利用黑名單和灰名單識別風險 ?
互聯(lián)網(wǎng)金融公司面臨的主要風險為惡意欺詐,70%左右的信貸損失來源于申請人的惡意欺詐??蛻粲馄诨蛘哌`約貸款中至少有30%左右可以收回,另外的一些可以通過催收公司進行催收,M2逾期的回收率在20%左右。 ?
市場上有近百家的公司從事個人征信相關(guān)工作,其主要的商業(yè)模式是反欺詐識別,灰名單識別,以及客戶征信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領(lǐng)先的大數(shù)據(jù)風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。
?
黑名單來源于民間借貸、線上P2P、信用卡公司、小額借貸等公司的歷史違約用戶,其中很大一部分不再有借貸行為,參考價值有限。另外一個主要來源是催收公司,催收的成功率一般小于于30%(M3以上的),會產(chǎn)生很多黑名單。 ?
灰名單是逾期但是還沒有達到違約的客戶(逾期少于3個月的客戶),灰名單也還意味著多頭借貸,申請人在多個貸款平臺進行借貸??偨杩顢?shù)目遠遠超過其還款能力。 ?
黑名單和灰名單是很好的風控方式,但是各個征信公司所擁有的名單僅僅是市場總量的一部分,很多互聯(lián)網(wǎng)金融公司不得不接入多個風控公司,來獲得更多的 黑名單來提高查得率。央行和上海經(jīng)信委正在聯(lián)合多家互聯(lián)網(wǎng)金融公司建立統(tǒng)一的黑名單平臺,但是很多互聯(lián)網(wǎng)金融公司都不太愿意貢獻自家的黑名單,這些黑名單 是用真金白銀換來的教訓。另外如果讓外界知道了自家平臺黑名單的數(shù)量,會影響其公司聲譽,降低公司估值,并令投資者質(zhì)疑其平臺的風控水平。 ?
GraphX(圖計算模型)
Spark GraphX*是伯克利AMPLAB的一個分布式圖計算框架項目,目前整合在spark運行框架中,為其提供BSP大規(guī)模并行圖計算能力。 ?
MLib(機器學習庫)
Spark MLlib是一個機器學習庫,它提供了各種各樣的算法,這些算法用來在集群上針對分類、回歸、聚類、協(xié)同過濾等。 ?
Streaming(流計算模型)
Spark Streaming支持對流數(shù)據(jù)的實時處理,以微批的方式對實時數(shù)據(jù)進行計算 ?
Kafka(分布式消息隊列)
Kafka是Linkedin于2010年12月份開源的消息系統(tǒng),它主要用于處理活躍的流式數(shù)據(jù)。 ?
活躍的流式數(shù)據(jù)在web網(wǎng)站應用中非常常見,這些數(shù)據(jù)包括網(wǎng)站的pv、用戶訪問了什么內(nèi)容,搜索了什么內(nèi)容等。 ?
這些數(shù)據(jù)通常以日志的形式記錄下來,然后每隔一段時間進行一次統(tǒng)計處理。