朋友圈

400-850-8622

全國(guó)統(tǒng)一學(xué)習(xí)專線 9:00-21:00

位置:北京研究生考試培訓(xùn)問(wèn)答 > 北京考研培訓(xùn)問(wèn)答 > 考研數(shù)學(xué)一線性代數(shù)該如何復(fù)習(xí)--考研初試

考研數(shù)學(xué)一線性代數(shù)該如何復(fù)習(xí)--考研初試

日期:2019-08-07 14:19:43     瀏覽:555    來(lái)源:天才領(lǐng)路者
核心提示: 2020考研數(shù)學(xué)一線性代數(shù)該如何復(fù)習(xí)的內(nèi)容分享,希望對(duì)大家的學(xué)習(xí)的有所幫助。 這一章《行列式》、第二章《矩陣》是線性代數(shù)中的基礎(chǔ)章節(jié),有必要熟練掌握。

  2020考研數(shù)學(xué)一線性代數(shù)該如何復(fù)習(xí)的內(nèi)容分享,希望對(duì)大家的學(xué)習(xí)的有所幫助。   這一章《行列式》、第二章《矩陣》是線性代數(shù)中的基礎(chǔ)章節(jié),有必要熟練掌握。行列式的核心內(nèi)容是求行列式,包括具體行列式的計(jì)算和抽象行列式的計(jì)算。   二、向量與線性方程組   向量與線性方程組是整個(gè)線性代數(shù)部分的核心內(nèi)容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問(wèn)題而做鋪墊的基礎(chǔ)性章節(jié)。向量與線性方程組的內(nèi)容聯(lián)系很密切,很多知識(shí)點(diǎn)相互之間都有或明或暗的相關(guān)性。復(fù)習(xí)這兩部分內(nèi)容有效的方法就是徹底理順諸多知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,因?yàn)檫@樣做首先能夠保證做到真正意義上的理解,同時(shí)也是熟練掌握和靈活運(yùn)用的前提。   三、特征值與特征向量   相對(duì)于前兩章來(lái)說(shuō),本章不是線性代數(shù)這門課的理論重點(diǎn),但卻是一個(gè)考試重點(diǎn)。其原因是解決相關(guān)題目要用到線代中的大量?jī)?nèi)容——既有行列式、矩陣又有線性方程組和線性相關(guān),“牽一發(fā)而動(dòng)全身”。

考研數(shù)學(xué)一線性代數(shù)該如何復(fù)習(xí)     考研初試

  四、二次型   本章所講的內(nèi)容從根本上講是第五章《特征值和特征向量》的一個(gè)延伸,因?yàn)榛涡蜑闃?biāo)準(zhǔn)型的核心知識(shí)為“對(duì)于實(shí)對(duì)稱矩陣A存在正交矩陣Q使得A可以相似對(duì)角化”,其過(guò)程就是上一章相似對(duì)角化在為實(shí)對(duì)稱矩陣時(shí)的應(yīng)用。

免責(zé)聲明:本信息由用戶發(fā)布,本站不承擔(dān)本信息引起的任何交易及知識(shí)產(chǎn)權(quán)侵權(quán)的法律責(zé)任!

如果本頁(yè)不是您要找的課程,您也可以百度查找一下: